Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Electrophysiol ; 34(3): 682-692, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36482158

RESUMEN

INTRODUCTION: Reliable ex vivo cardiac ablation models have the potential to increase catheter testing throughput while minimizing animal usage. The goal of this work was to develop a physiologically relevant ex vivo swine model of cardiac ablation displaying minimal variability and high repeatability and identify and optimize key parameters involved in ablation outcomes. METHODS AND RESULTS: A root cause analysis was conducted to identify variables affecting ablation outcomes. Parameters associated with the tissue, bath media, and impedance were identified. Variables were defined experimentally and/or from literature sources to best mimic the clinical cardiac ablation setting. The model was validated by performing three independent replicates of ex vivo myocardial ablation and a direct comparison of lesion outcomes of the ex vivo swine myocardial and in vivo canine thigh preparation (TP) models. Replicate experiments on the ex vivo model demonstrated low variance in ablation depth (6.5 ± 0.6, 6.3 ± 0.6, 6.2 ± 0.4 mm) and width (10.4 ± 1.1, 9.7 ± 1.0, 9.9 ± 0.9 mm) and no significant differences between replicates. In a direct comparison of the two models, the ex vivo model demonstrated ablation depths similar to the canine TP model at 35 W (6.9 ± 1.0, and 7.0 ± 0.9 mm) and 50 W (8.0 ± 0.7, and 8.4 ± 0.7 mm), as well as similar power to depth ratios (15% and 19% for the ex vivo cardiac and in vivo TP models, respectively). CONCLUSION: The ex vivo model exhibited strong lesion reproducibility and power-to-depth ratios comparable to the in vivo TP model. The optimized ex vivo model minimizes animal usage with increased throughput, lesion characteristics similar to the in vivo TP model, and ability to discriminate minor variations between different catheter designs.


Asunto(s)
Ablación por Catéter , Corazón , Porcinos , Animales , Perros , Reproducibilidad de los Resultados , Miocardio/patología , Ablación por Catéter/métodos , Catéteres , Catéteres Cardíacos
2.
Biotechnol Prog ; 26(5): 1431-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20564356

RESUMEN

During early preclinical development of therapeutic proteins, representative materials are often required for process development, such as for pharmacokinetic/pharmacodynamic studies in animals, formulation design, and analytical assay development. To rapidly generate large amounts of representative materials, transient transfection is commonly used. Because of the typical low yields with transient transfection, especially in CHO cells, here we describe an alternative strategy using stable transfection pool technology. Using stable transfection pools, gram quantities of monoclonal antibody (Mab) can be generated within 2 months post-transfection. Expression levels for monoclonal antibodies can be achieved ranging from 100 mg/L to over 1000 mg/L. This methodology was successfully scaled up to a 200 L scale using disposable bioreactor technology for ease of rapid implementation. When fluorescence-activated cell sorting was implemented to enrich the transfection pools for high producers, the productivity could be improved by about three-fold. We also found that an optimal production time window exists to achieve the highest yield because the transfection pools were not stable and productivity generally decreased over length in culture. The introduction of Universal chromatin-opening elements elements into the expression vectors led to significant productivity improvement. The glycan distribution of the Mab product generated from the stable transfection pools was comparable to that from the clonal stable cell lines.


Asunto(s)
Proteínas/metabolismo , Transfección/métodos , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/genética , Células CHO , Cricetinae , Cricetulus , Citometría de Flujo , Glicosilación , Ingeniería de Proteínas/métodos , Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...